Stone duality for first-order logic: a nominal approach to logic and topology
نویسنده
چکیده
What are variables, and what is universal quantification over a variable? Nominal sets are a notion of ‘sets with names’, and using equational axioms in nominal algebra these names can be given substitution and quantification actions. So we can axiomatise first-order logic as a nominal logical theory. We can then seek a nominal sets representation theorem in which predicates are interpreted as sets; logical conjunction is interpreted as sets intersection; negation as complement. Now what about substitution; what is it for substitution to act on a predicate-interpreted-as-a-set, in which case universal quantification becomes an infinite sets intersection? Given answers to these questions, we can seek notions of topology. What is the general notion of topological space of which our sets representation of predicates makes predicates into ‘open sets’; and what specific class of topological spaces corresponds to the image of nominal algebras for first-order logic? The classic Stone duality answers these questions for Boolean algebras, representing them as Stone spaces. Nominal algebra lets us extend Boolean algebras to ‘FOL-algebras’, and nominal sets let us correspondingly extend Stone spaces to ‘∀-Stone spaces’. These extensions reveal a wealth of structure, and we obtain an attractive and self-contained account of logic and topology in which variables directly populate the denotation, and open predicates are interpreted as sets rather than functions from valuations to sets.
منابع مشابه
STONE DUALITY FOR R0-ALGEBRAS WITH INTERNAL STATES
$Rsb{0}$-algebras, which were proved to be equivalent to Esteva and Godo's NM-algebras modelled by Fodor's nilpotent minimum t-norm, are the equivalent algebraic semantics of the left-continuous t-norm based fuzzy logic firstly introduced by Guo-jun Wang in the mid 1990s.In this paper, we first establish a Stone duality for the category of MV-skeletons of $Rsb{0}$-algebras and the category of t...
متن کاملTitle Fuzzy Topology and Łukasiewicz Logics from the
This paper explores relationships between many-valued logic and fuzzy topology from the viewpoint of duality theory. We first show a fuzzy topological duality for the algebras of Lukasiewicz n-valued logic with truth constants, which generalizes Stone duality for Boolean algebras to the n-valued case via fuzzy topology. Then, based on this duality, we show a fuzzy topological duality for the al...
متن کاملTopology Control in Wireless Sensor Network using Fuzzy Logic
Network sensors consist of sensor nodes in which every node covers a limited area. The most common use ofthese networks is in unreachable fields.Sink is a node that collects data from other nodes.One of the main challenges in these networks is the limitation of nodes battery (power supply). Therefore, the use oftopology control is required to decrease power consumption and increase network acce...
متن کاملFirst-order logical duality
From a logical point of view, Stone duality for Boolean algebras relates theories in classical propositional logic and their collections of models. The theories can be seen as presentations of Boolean algebras, and the collections of models can be topologized in such a way that the theory can be recovered from its space of models. The situation can be cast as a formal duality relating two categ...
متن کاملDualities for Algebras of Fitting's Many-Valued Modal Logics
Stone-type duality connects logic, algebra, and topology in both conceptual and technical senses. This paper is intended to be a demonstration of this slogan. In this paper we focus on some versions of Fitting’s L-valued logic and L-valued modal logic for a finite distributive lattice L. Using the theory of natural dualities, we first obtain a duality for algebras of L-valued logic. Based on th...
متن کامل